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Algorithmic complexity in the minority game
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In this paper, we present our approach for the study of the complexity of Minority Game using tools from
thermodynamics and statistical physics. Previous attempts were based on the behavior of volatility, an observ-
able of the financial markets. Our approach focuses on some properties of the binary stream of outcomes of the
game. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory, allows us to explain some
properties of collective behavior of the agents. Mutual information function, a measure related to Shannon’s
information entropy, was useful to observe a kind of phase transition when applied to the binary string of the
whole history of the game.

PACS numbsd(s): 02.50.Le, 05.40-a, 05.65+b, 87.23.Ge

[. INTRODUCTION [3],[4], [6], [7]) A. Cavagnd 8] proved that the behavior of
the above mentioned measure does not depend of the real
In many natural and social systems agents establishistory of the game. According to R€i8] the only crucial
among themselves a complex network of interactions. Oftefiequirement is that all the individuals must possess the same
in such systems it is the case that successful agents are thdgéormation irrespective of the fact that if this information is
which act in ways that are distinct from their competitors. true or false. Starting from this, A. Cavagna reproduces the
There have been many attempts to understand the genefg&sults obtained in Ref§6] and[7]. N. F. Johnsoret al.[9]
underlying dynamics of systems in which the agents seek tgroved that temporal correlation are relevant in the Minority
be different. Some of them have focused on the analysis of #ame in populations with agents having different values of
class of simple games, which have come to be known a8 They did not propose any alternating measure. D. Challet
“minority games” [1-3]. and Y. C. Zhang[10] also studied this problem giving a
The Minority Game was first introduced in the analysis of Measure, which characterize the inefficiency of the system.
decision making by agents with bounded rationality, basedS far as we know, a different measure taking into account
on the “El Farol” bar problem[5], which allows one to the dynamical(i.e., time evolution behavior of the model
address the question of how they react to publichas not been proposed.

information—such as prices changes—and the feedback ef- Our point of view is that volatility is not a good measure
fects of these reactions. of the behavior of the model. All our claims are based in our

The setup of the Minority Game is the followingd  belief that the binary string of successive outcome of the

agents have to choose at each time step whether to go infiime contains all the relevant information about the mode!.

room O or 1. The agents who have chosen the less Crowde-Eherefore, if VOlatIllty is insensitive to the real hiStory of the

room (minority room) win, and the others lose. The agents 9ame, better measures should be found.

have limited capabilities, and only “remember” the last In this paper, we introduce an approach for the study of

outcomes of the game. The numlmeis called memory size the complex behavior of Minority Game borrowing tools

or brain size. In order to decide which room to enter, agent§fom thermodynamics and statistical physidsl-14. We

use strategies. A strategy is a device by which to process théill show that two measures, physical complexitys] and

outcomes of the winning room in the lasttime steps, thus Mutual information function[16,17 strongly depend on

prescribing what room to enter next. brain sizem of the agents and throw light on dynamics of the
The agents randomly pickstrategies at the beginning of model. They are better measures than volatility.

the game. After each turn, the agents assign (uirtual)

point to each of their strategies, which would have predicted Il. PHYSICAL COMPLEXITY OF MINORITY GAME

the correct outcome. At each turn of the game, they use

whichever is the most successful strategy amongstinehis The study of complex systems has enjoyed tremendous
possession, i.e., he chooses the one that has gained magsbwth although the concept of complexity itself is vaguely
virtual points. defined. In searching for an adequate measure for complexity

As a dynamical system with many elements under mutuabf binary string one could expect that the two limiting cases
influence, the minority game is thought to underlie much of(e.g., regular strings and the random odnkave null com-
the phenomena associated with complexity. In order to unplexity, while the “intermediate” strings that appears to
derstand this feature, particular emphasis has been devotedhave information encoded are thought to be complex. Be-
study the mean square deviation of the number of agentsides, as remarked in Refd.1] and[12] a classification of a
making a given choicer. In the financial context, this ob- string in absence of an environment within which it is to be
servable is called volatility. Although the great amount ofinterpreted is quite meaningless. In other words the complex-
paper devoted to study this quantitgee for example Refs. ity of a string should be determined by analyzing its corre-
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FIG. 1. Graphs of£(l) versusl for different values ofm. From
above to below the plots correspondnte- 3,4,5. The lowest plot is
the mean value o€(l) over 10 random sequences.

lation with a physical environment.
Physical complexity(first studied in Refs[11] and[12])
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FIG. 3. The ratio'standard deviatiofimean for numerical simu-
lations with different values of brain size and number of strategies
per agent. The mean values were calculated over 10 runs with the
same parameters. The curves intersect among themsbed, but
for 6<1 they are ordered. In the intervakd, from above to below
in the graphm=3 ands=6; m=4 ands=6; m=3 ands=3. The

is defined as the number of binary digits that are meaningfulPWest curve corresponds to random sequences.

in a string » with respect to the environment. In reference to

Minority Game the only physical record one gets is the bi-Where|| represent the length of in bits, T(r) the result of
nary string of the successive outcomes and we consider it 4¢nning 7 on Turing machiné andK(7) the Kolmogorov-
the environment. We study the physical complexity of sub- Chaitin complexity of sequence. In the framework of this
strings ofs. The comprehension of their complex featurestheory, a string is said to be regularkf( 7)< 7. It means
has high practical importance. Every agent on the game udgat » can be described by a programwith length smaller
only this kind of information to decide his next outcome than s length.

which has some weight in the formation of future substrings AS We have said, the interpretation of a string should be
to be used by the agents themselves in their future decisioflone in the framework of an environment. Hence, let imag-
We briefly review the above mentioned measures devoted tH€ @ Turing machine that takes an infinite strings input.

analyze the complexity of binary strings.

The Kolmogorov-Chaitin complexityl13,14] is defined as
the length of the shortest programproducing the sequence
n when run on universal Turing machiife

K(m)=min{|z|:p=T(m)}, (N
3 T T T
25k *m=3 -—-> m=4 *
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FIG. 2. Values of the loss of information versusvhen the
memory sizem changes from 3 to 4upper ploj from 4 to 5
(middle ploy and from 5 to 6(lower plof.

We can define the conditional complexi§( /) [15] as
the length of the smallest program that compuigsn a
Turing machine having as input:

K(nle)=min{|m|:n=Cy(me)}. (2)

Finally, the physical complexity can be defined as the num-
ber of bits that are meaningful in with respect tce

K(n:e)=|n|—K(nle). 3

Notice that|7| also representsee Refs[12] and[15]) the
unconditional complexity of string, i.e., the value of com-
plexity if the input would bes =. Of course, the measure
K(#:e) as defined in Eq(3) has few practical application,
mainly because it is impossible to know the way in which
information aboute is coded in». However(as shown in
Ref.[12] or Ref.[15]), if a statistical ensemble of strings is
available to us, then the determination of complexity be-
comes an exercise in information theory. It can be proved
that the average values(|#|) of the physical complexity
K(7:¢) taken over an ensemhiof strings of length#| can

be approximated by

Clnh=(K(n:e))s=|nl-K(Z/e), (4)

where
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FIG. 4. Mutual information functioria) of streams and power
spectrum(b) of that function. The value of brain sizs=3 and
number of strategies per agesit 3.

K(Z/e)= —nEE p(7le)log, p(7le) (5)

and the sum is taking over all the stringsn the ensemble
3. In a population of strings in environmeng, the quantity
n(7n)/N, wheren(s) denotes the number of strings equal to
7 in X, approximatep(n/e) asN—ce.

Let e=aja,az...a,...; 8,€{0,1} be the stream of out-
comes of the game arlda positive integet=2. Let 3, the
ensemble of sequences of lendttbuilt up by a moving
window of lengthl, i.e., if ne 3, thenp=a;a;11...aj+|_1
for some value of.

We calculate the values dE(l) using this kind of en-
sembleX, . In Fig. 1 is shown the graph @& (1) for different
values of memory sizen and for a fixed value o$. Notice
that whenm increase, the values @(l) for every fixedl|
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FIG. 5. Mutual information functiorfa) and power spectrurtb)
for a random sequence.

If the brain size isn= 3, then the agents cannot differentiate
the above histories. Hence, they act in both cases as their
best performing strategy suggestsmt=4 they can differ-

decrease. The explanation of this fact is as follows: Considegntiate and in general have different responses to histoyies

the following two “histories” of the game

and h,. Therefore, asm increases the perception of the
agents become less “coarsed” and global response more un-
predictable.

Then, there is an increase of entropyragrows. More
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FIG. 6. Power spectra of mutual information function for several values &rom(a) to (d) m=3,4,5,6. As the brain size increase, more
and more frequencies enter to the signal. Whrechanges from 3 to 4 seems to appear a kind of phase transition. The number of strategies
per agents in all simulations &= 3.

precisely, for every value of the corresponding value of lll. MUTUAL INFORMATION FUNCTION
C(l) decreases am increases. In Fig. 2 is shown three OF MINORITY GAME
curves concerning to that loss of information. Notice that as

mincreases the curves are more flat. It means that the speeg " the last section, we show how the brain size of agents
of entropy growth decreases with affects the degree of randomness of the stream of successive

Besides, the calculated values of physical complexity ar@utcomes of the game. However, nothing has been said about
more “stable” as the length of the strings increase. In Fig. 3the correlation of the outcomes along the time. Because the
are shown the ratidstandard deviation/mearfor several distance between two binary symbols represent the number
C(l) curves for different values of the memory sigeand  Of time iterations between them, a measure of the degree of
number of strategies. Notice that as the lengthincrease correlation between elements in a symbolic string could
this ratio decrease, indicating that the standard deviation is yeld information about time correlation.
smaller fraction of the mean when the values|ofrow. The mutual information function is defined as
Interestingly, the lowest curve corresponds to physical com-
plexity of random sequences. It confirms our above claim
that physical complexity tends to be null in random se- M(d)= 2 P.s(d)log,
guences. @p

The above discussion show that the stream of binary data
e encodes relevant information about the game. The longer where P ,4(d) is the probability of having a symbat fol-
substring ofe is, the larger the average number of binarylowedd sites away by a symb@ andP,, the density of the
digits that are meaningful in it. There is also a loss of infor-symbol «. It can be proved16] that mutual information
mation asmincreases. The largen, the smaller the number function is a very sensitive measure of correlation.
of binary digits that are meaningful in a substring of given Fourier spectraésee, e.g., Ref20]) is widely used in time
length. series analysis, because the visual representation in the fre-

P.p(d)
PP,

: (6)
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guency domain can more easily reveal patterns that armeans that more often will appear abrupt changes in the
harder to discern in the primary data, for example, intricatemutual information function. Whem changes from 3 to 4
periodical behavior. We use here Fourier transform of muthe power spectrum become continous and behavesfas 1/
tual information function to detect some periodical featuresvherea= a(m) reflecting an absence of characteristic time
of that function when applied to the stream of outcomes ofcale, typical in the behavior of financial index before
the game. From now on, we call power spectra of mutuatrashes. As we understand it, this kind of phase transition
information function to the product of Fourier transform of has nothing to do with that reported in R¢8] or [4], be-
that function by its complex conjugate cause that transition strongly depends on the assumption that
volatility does not depend on the history of the gafsee for
example the deduction of Eq5) in Ref. [4]). The above
results are in perfect agreement with the result of the last
section, because as we show there, the increasetefds to
where @ is a constant related with the sample frequency andlecrease the predictability of the agents as the behavior of
L is the number of data available ft(d), see Ref[20] for ~ the averaged physical complexity shows.
details.
_ The most i_mportan.t feature of mutuall information func- IV. CONCLUSIONS
tion of the stringe is his remarkable persistence of correla-
tion at some large distances and his periodical behavior. In In this paper, we introduce a new approach for the study
Fig. 4 are shown that function and his power spectra for af the complex behavior of Minority Game using the tools of
simulation of the game. There are abrupt changes in the cothermodynamics and statistical physics. We have shown that
relation of symbols along the string for certain distances. physical complexity, a magnitude rooted in Kolmogorov-
Notice that a binary symbol belonging tocould have high  Chaitin theory yields relevant information about the increase
correlation with a second symbol far away of it and at theof entropy in the ensembles, when| increase. We show
same time a very low correlation with some close neighborghat asmincreases, the average number of bits that are mean-
of that second binary digit. More than that, this behavior isingful in a substring of lengtt of ¢ decreases. The mutual
periodic as we could conclude from the power spectra ofnformation function, a magnitude, which has his origin in
M(d). Notice that this loss of correlation reflectedNi(d) Shannon’s information entropy, throws light on the dynam-
is translated in loss of predictability of the agents of theics of the global time evolution of the model. The way in
game. Finally, we also stress that the above property stronghyhich the average loss of information impinges on the whole
depends on the real historyof the game. Mutual informa- series of outcomes is yielding sudden changes of correlation
tion function and his power spectrum for a random sequencin the series. Asnincrease these changes appear more often
are shown in Fig. 5. An extensive study of this fact can beand for some values of seems to arise the above mentioned
found in Refs.[16] and[17]. A more structured symbolic phase transition and the power spectrum becomes continuos.
sequence as those found in DNA molecule possess mutual
information function very different of that shown in Fig. 4.
See Refs[18] and[19] for the details. ACKNOWLEDGMENTS
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