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Algorithmic complexity in the minority game
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In this paper, we present our approach for the study of the complexity of Minority Game using tools from
thermodynamics and statistical physics. Previous attempts were based on the behavior of volatility, an observ-
able of the financial markets. Our approach focuses on some properties of the binary stream of outcomes of the
game. Physical complexity, a magnitude rooted in Kolmogorov-Chaitin theory, allows us to explain some
properties of collective behavior of the agents. Mutual information function, a measure related to Shannon’s
information entropy, was useful to observe a kind of phase transition when applied to the binary string of the
whole history of the game.

PACS number~s!: 02.50.Le, 05.40.2a, 05.65.1b, 87.23.Ge
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I. INTRODUCTION

In many natural and social systems agents estab
among themselves a complex network of interactions. O
in such systems it is the case that successful agents are
which act in ways that are distinct from their competitors

There have been many attempts to understand the ge
underlying dynamics of systems in which the agents see
be different. Some of them have focused on the analysis
class of simple games, which have come to be known
‘‘minority games’’ @1–3#.

The Minority Game was first introduced in the analysis
decision making by agents with bounded rationality, ba
on the ‘‘El Farol’’ bar problem@5#, which allows one to
address the question of how they react to pub
information–such as prices changes–and the feedback
fects of these reactions.

The setup of the Minority Game is the following:N
agents have to choose at each time step whether to go
room 0 or 1. The agents who have chosen the less crow
room ~minority room! win, and the others lose. The agen
have limited capabilities, and only ‘‘remember’’ the lastm
outcomes of the game. The numberm is called memory size
or brain size. In order to decide which room to enter, age
use strategies. A strategy is a device by which to process
outcomes of the winning room in the lastm time steps, thus
prescribing what room to enter next.

The agents randomly picks strategies at the beginning o
the game. After each turn, the agents assign one~virtual!
point to each of their strategies, which would have predic
the correct outcome. At each turn of the game, they
whichever is the most successful strategy among thes in his
possession, i.e., he chooses the one that has gained
virtual points.

As a dynamical system with many elements under mu
influence, the minority game is thought to underlie much
the phenomena associated with complexity. In order to
derstand this feature, particular emphasis has been devot
study the mean square deviation of the number of ag
making a given choices. In the financial context, this ob
servable is called volatility. Although the great amount
paper devoted to study this quantity~see for example Refs
PRE 621063-651X/2000/62~4!/4553~5!/$15.00
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@3#, @4#, @6#, @7#! A. Cavagna@8# proved that the behavior o
the above mentioned measure does not depend of the
history of the game. According to Ref.@8# the only crucial
requirement is that all the individuals must possess the s
information irrespective of the fact that if this information
true or false. Starting from this, A. Cavagna reproduces
results obtained in Refs.@6# and@7#. N. F. Johnsonet al. @9#
proved that temporal correlation are relevant in the Minor
Game in populations with agents having different values
m. They did not propose any alternating measure. D. Cha
and Y. C. Zhang@10# also studied this problem giving
measure, which characterize the inefficiency of the syst
As far as we know, a different measure taking into acco
the dynamical~i.e., time evolution! behavior of the model
has not been proposed.

Our point of view is that volatility is not a good measu
of the behavior of the model. All our claims are based in o
belief that the binary string of successive outcome of
game contains all the relevant information about the mod
Therefore, if volatility is insensitive to the real history of th
game, better measures should be found.

In this paper, we introduce an approach for the study
the complex behavior of Minority Game borrowing too
from thermodynamics and statistical physics@11–14#. We
will show that two measures, physical complexity@15# and
mutual information function@16,17# strongly depend on
brain sizem of the agents and throw light on dynamics of th
model. They are better measures than volatility.

II. PHYSICAL COMPLEXITY OF MINORITY GAME

The study of complex systems has enjoyed tremend
growth although the concept of complexity itself is vague
defined. In searching for an adequate measure for comple
of binary string one could expect that the two limiting cas
~e.g., regular strings and the random ones! have null com-
plexity, while the ‘‘intermediate’’ strings that appears
have information encoded are thought to be complex.
sides, as remarked in Refs.@11# and@12# a classification of a
string in absence of an environment within which it is to
interpreted is quite meaningless. In other words the comp
ity of a string should be determined by analyzing its cor
4553 ©2000 The American Physical Society
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lation with a physical environment.
Physical complexity~first studied in Refs.@11# and @12#!

is defined as the number of binary digits that are meanin
in a stringh with respect to the environment. In reference
Minority Game the only physical record one gets is the
nary string of the successive outcomes and we consider
the environment«. We study the physical complexity of sub
strings of «. The comprehension of their complex featur
has high practical importance. Every agent on the game
only this kind of information to decide his next outcom
which has some weight in the formation of future substrin
to be used by the agents themselves in their future decis
We briefly review the above mentioned measures devote
analyze the complexity of binary strings.

The Kolmogorov-Chaitin complexity@13,14# is defined as
the length of the shortest programp producing the sequenc
h when run on universal Turing machineT

K~h!5min$upu:h5T~p!%, ~1!

FIG. 1. Graphs ofC( l ) versusl for different values ofm. From
above to below the plots correspond tom53,4,5. The lowest plot is
the mean value ofC( l ) over 10 random sequences.

FIG. 2. Values of the loss of information versusl when the
memory sizem changes from 3 to 4~upper plot! from 4 to 5
~middle plot! and from 5 to 6~lower plot!.
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whereupu represent the length ofp in bits,T(p) the result of
runningp on Turing machineT andK(h) the Kolmogorov-
Chaitin complexity of sequencep. In the framework of this
theory, a string is said to be regular ifK(h),h. It means
that h can be described by a programp with length smaller
thanh length.

As we have said, the interpretation of a string should
done in the framework of an environment. Hence, let ima
ine a Turing machine that takes an infinite string« as input.
We can define the conditional complexityK(h/«) @15# as
the length of the smallest program that computesh in a
Turing machine having« as input:

K~h/«!5min$upu:h5CT~p,«!%. ~2!

Finally, the physical complexity can be defined as the nu
ber of bits that are meaningful inh with respect to«

K~h:«!5uhu2K~h/«!. ~3!

Notice that uhu also represent~see Refs.@12# and @15#! the
unconditional complexity of stringh, i.e., the value of com-
plexity if the input would be«5B. Of course, the measur
K(h:«) as defined in Eq.~3! has few practical application
mainly because it is impossible to know the way in whi
information about« is coded inh. However ~as shown in
Ref. @12# or Ref. @15#!, if a statistical ensemble of strings i
available to us, then the determination of complexity b
comes an exercise in information theory. It can be prov
that the average valuesC(uhu) of the physical complexity
K(h:«) taken over an ensembleS of strings of lengthuhu can
be approximated by

C~ uhu!5^K~h:«!&S>uhu2K~S/«!, ~4!

where

FIG. 3. The ratio~standard deviation!/mean for numerical simu-
lations with different values of brain size and number of strateg
per agent. The mean values were calculated over 10 runs with
same parameters. The curves intersect among them for 2< l<6, but
for 6, l they are ordered. In the interval 6, l , from above to below
in the graph:m53 ands56; m54 ands56; m53 ands53. The
lowest curve corresponds to random sequences.
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K~S/«!52 (
nPS

p~h/«!log2 p~h/«! ~5!

and the sum is taking over all the stringsh in the ensemble
S. In a population ofN strings in environment«, the quantity
n(h)/N, wheren(s) denotes the number of strings equal
h in S, approximatesp(h/«) asN→`.

Let «5a1a2a3 ...an ...; aiP$0,1% be the stream of out
comes of the game andl a positive integerl>2. Let S l the
ensemble of sequences of lengthl built up by a moving
window of lengthl, i.e., if hPS l then h5aiai 11 ...ai 1 l 21
for some value ofi.

We calculate the values ofC( l ) using this kind of en-
sembleS l . In Fig. 1 is shown the graph ofC( l ) for different
values of memory sizem and for a fixed value ofs. Notice
that whenm increase, the values ofC( l ) for every fixed l
decrease. The explanation of this fact is as follows: Cons
the following two ‘‘histories’’ of the game

h151010...; h251011... .

FIG. 4. Mutual information function~a! of stream« and power
spectrum~b! of that function. The value of brain sizem53 and
number of strategies per agents53.
er

If the brain size ism53, then the agents cannot differentia
the above histories. Hence, they act in both cases as
best performing strategy suggests. Ifm54 they can differ-
entiate and in general have different responses to historieh1
and h2 . Therefore, asm increases the perception of th
agents become less ‘‘coarsed’’ and global response more
predictable.

Then, there is an increase of entropy asm grows. More

FIG. 5. Mutual information function~a! and power spectrum~b!
for a random sequence.
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FIG. 6. Power spectra of mutual information function for several values ofm. From~a! to ~d! m53,4,5,6. As the brain size increase, mo
and more frequencies enter to the signal. Whenm changes from 3 to 4 seems to appear a kind of phase transition. The number of stra
per agents in all simulations iss53.
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precisely, for every value ofl the corresponding value o
C( l ) decreases asm increases. In Fig. 2 is shown thre
curves concerning to that loss of information. Notice that
m increases the curves are more flat. It means that the s
of entropy growth decreases withm.

Besides, the calculated values of physical complexity
more ‘‘stable’’ as the length of the strings increase. In Fig
are shown the ratio~standard deviation/mean! for several
C( l ) curves for different values of the memory sizem and
number of strategiess. Notice that as the lengthl increase
this ratio decrease, indicating that the standard deviation
smaller fraction of the mean when the values ofl grow.
Interestingly, the lowest curve corresponds to physical co
plexity of random sequences. It confirms our above cla
that physical complexity tends to be null in random s
quences.

The above discussion show that the stream of binary d
« encodes relevant information about the game. The long
substring of« is, the larger the average number of bina
digits that are meaningful in it. There is also a loss of info
mation asm increases. The largerm, the smaller the numbe
of binary digits that are meaningful in a substring of giv
length.
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III. MUTUAL INFORMATION FUNCTION
OF MINORITY GAME

In the last section, we show how the brain size of age
affects the degree of randomness of the stream of succe
outcomes of the game. However, nothing has been said a
the correlation of the outcomes along the time. Because
distance between two binary symbols represent the num
of time iterations between them, a measure of the degre
correlation between elements in a symbolic string co
yield information about time correlation.

The mutual information function is defined as

M ~d!5(
a,b

Pab~d!log2FPab~d!

PaPb
G , ~6!

wherePab(d) is the probability of having a symbola fol-
lowedd sites away by a symbolb andPa the density of the
symbol a. It can be proved@16# that mutual information
function is a very sensitive measure of correlation.

Fourier spectra~see, e.g., Ref.@20#! is widely used in time
series analysis, because the visual representation in the
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quency domain can more easily reveal patterns that
harder to discern in the primary data, for example, intric
periodical behavior. We use here Fourier transform of m
tual information function to detect some periodical featu
of that function when applied to the stream of outcomes
the game. From now on, we call power spectra of mut
information function to the product of Fourier transform
that function by its complex conjugate

Ŝ~k!5uU(
d51

L

M ~d!e2 i2p~k/L !dU2

, ~7!

whereu is a constant related with the sample frequency a
L is the number of data available forM (d), see Ref.@20# for
details.

The most important feature of mutual information fun
tion of the string« is his remarkable persistence of corre
tion at some large distances and his periodical behavior
Fig. 4 are shown that function and his power spectra fo
simulation of the game. There are abrupt changes in the
relation of symbols along the« string for certain distances
Notice that a binary symbol belonging to« could have high
correlation with a second symbol far away of it and at t
same time a very low correlation with some close neighb
of that second binary digit. More than that, this behavior
periodic as we could conclude from the power spectra
M (d). Notice that this loss of correlation reflected inM (d)
is translated in loss of predictability of the agents of t
game. Finally, we also stress that the above property stro
depends on the real history« of the game. Mutual informa-
tion function and his power spectrum for a random seque
are shown in Fig. 5. An extensive study of this fact can
found in Refs.@16# and @17#. A more structured symbolic
sequence as those found in DNA molecule possess mu
information function very different of that shown in Fig. 4
See Refs.@18# and @19# for the details.

Another interesting fact is the behavior of the power sp
tra as the memory sizem increase. In Fig. 6 this function i
shown for several values of memory size. Notice that am
increases more and more frequencies enter to the spect
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means that more often will appear abrupt changes in
mutual information function. Whenm changes from 3 to 4
the power spectrum become continous and behaves asf a,
wherea5a(m) reflecting an absence of characteristic tim
scale, typical in the behavior of financial index befo
crashes. As we understand it, this kind of phase transi
has nothing to do with that reported in Ref.@3# or @4#, be-
cause that transition strongly depends on the assumption
volatility does not depend on the history of the game~see for
example the deduction of Eq.~5! in Ref. @4#!. The above
results are in perfect agreement with the result of the
section, because as we show there, the increase ofm tends to
decrease the predictability of the agents as the behavio
the averaged physical complexity shows.

IV. CONCLUSIONS

In this paper, we introduce a new approach for the stu
of the complex behavior of Minority Game using the tools
thermodynamics and statistical physics. We have shown
physical complexity, a magnitude rooted in Kolmogoro
Chaitin theory yields relevant information about the increa
of entropy in the ensemblesS l when l increase. We show
that asm increases, the average number of bits that are me
ingful in a substring of lengthl of « decreases. The mutua
information function, a magnitude, which has his origin
Shannon’s information entropy, throws light on the dyna
ics of the global time evolution of the model. The way
which the average loss of information impinges on the wh
series of outcomes is yielding sudden changes of correla
in the series. Asm increase these changes appear more o
and for some values ofm seems to arise the above mention
phase transition and the power spectrum becomes contin
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